Abstract

AbstractAn improved kinetic model for the radical polymerization of N‐vinyl‐pyrrolidone (NVP) in aqueous medium is developed. Quantum chemical simulations reveal that the transfer to polymer is of minor importance whereas the transfer to monomer by hydrogen abstraction in 3‐position of the pyrrolidone ring leads to a radical with a double bond which initiates a new chain bearing a terminal double bond (TDB). The resulting dead chains with one, two, or more TDB are the main source for a strong increase of molar mass in batch reactors at high conversion due to long chain branching and crosslinking. This can be a source for gel formation and fouling in continuous reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call