Abstract
The side-on-end-on coordination of N2 can be very important to activate and functionalize this very stable molecule. However, such coordination has rarely been reported. This study reports a gas-phase species (a polynuclear vanadium nitride cluster anion [V5 N5 ]- ) that can capture N2 efficiently (12 %), and the quantum chemistry modelling suggests an unusual side-on-end-on coordination. The cluster anions were generated by laser ablation and the reaction with N2 has been characterized by mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The back-donation interactions between the localized d-d bonding orbitals on the low-coordinated dual metal (V) sites and the antibonding π* orbitals of N2 are the driving forces to adsorb N2 with a high binding energy (about 2.0 eV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.