Abstract

Non-uniform amplitude excitation arrays are nowadays very desirable in the modern wireless communication systems. They have ability to provide required radiation characteristics such as low side lobes and good directivity. The uniform amplitude excitation arrays are good in providing good directivity and narrow beam width. However, these desired radiation features are come at the cost of relatively high side lobes. Thus, these types of arrays are not widely used in the wireless communication systems especially when these arrays are operated in a noisy and crowded environment that contains many interfering signals. Non-uniform amplitude excitations such as Dolph and Taylor are considered in this paper and their performances are investigated under various array parameters. Simulation results show that as the amplitude excitations of the array elements decaying at the edge elements more reduction in the sidelobe patterns can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.