Abstract
The increasing of public neuroimaging datasets opens a door to analyzing homogeneous human brain conditions across datasets by transfer learning (TL). However, neuroimaging data are high-dimensional, noisy, and with small sample sizes. It is challenging to learn a robust model for data across different cognitive experiments and subjects. A recent TL approach minimizes domain dependence to learn common cross-domain features, via the Hilbert-Schmidt Independence Criterion (HSIC). Inspired by this approach and the multi-source TL theory, we propose a Side Information Dependence Regularization (SIDeR) learning framework for TL in brain condition decoding. Specifically, SIDeR simultaneously minimizes the empirical risk and the statistical dependence on the domain side information, to reduce the theoretical generalization error bound. We construct 17 brain decoding TL tasks using public neuroimaging data for evaluation. Comprehensive experiments validate the superiority of SIDeR over ten competing methods, particularly an average improvement of 15.6% on the TL tasks with multi-source experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.