Abstract

A double quantum dot system with a definitive transverse electric field in the plane of the sample is defined by combining a facile side-gating technique with enhancement mode InAs nanowires. Positive bias on the plunger gates enhance quantum dot segments along the nanowire, negative bias on barrier gates deplete regions, and situating gates biased at opposite polarities on opposing sides of the nanowire allows an electric field to be engineered. With sufficiently biased barrier regions stable bias triangle features are observed in the weak interdot coupling regime. The singlet-triplet energy splitting ΔST in Pauli spin-blockaded features is studied as a function of an external magnetic field applied perpendicular to the sample plane. We interpret an apparent absence of mixing between singlet and triplet states as an indication that the spin–orbit field is oriented out of the sample plane due to the induced electric field. Finally, we discuss the potential of combining advanced gating architectures with enhancement mode nanowires to control the orientation of the spin–orbit field—a prospect that could enable multiple, nanowire-based spin-qubits to be operated on a single chip with a fixed-angle external magnetic field applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call