Abstract

The structural and electronic properties of SiC-based two-dimensional (2D) crystals are studied by means of density functional theory and many-body perturbation theory. Such properties cannot simply be interpolated between graphene and silicene. The replacement of half of the C atoms by Si atoms opens a large direct electronic gap and destroys the Dirac cones. Hydrogenation further opens the gap and significantly reduces the electron affinity to 0.1 or 1.8 eV in dependence on the carbon or silicon termination of the 2D crystal surface, thus showing a unique direction dependent ionization potential. This suggests the use of 2D-SiC:H as electron or hole filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.