Abstract

Masking is a popular countermeasure against side-channel attacks, which randomizes secret data with random and uniform variables called masks. At software level, masking is usually added in the source code and its effectiveness needs to be verified. In this paper, we propose a symbolic method to verify side-channel robustness of masked programs. The analysis is performed at the assembly level since compilation and optimizations may alter the added protections. Our proposed method aims to verify that intermediate computations are statistically independent from secret variables using defined distribution inference rules. We verify the first round of a masked AES in 22 s and show that some secure algorithms or source codes are not leakage-free in their assembly implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.