Abstract

Conjugated polymer frameworks (CPFs) have recently sparked tremendous research interest due to their broad potentials in various frontline application areas such as photocatalysis, sensing, gas storage, energy storage, etc. These framework materials, without sidechains or functional groups on their backbone, are generally insoluble in common organic solvents and less solution processable for further device applications. There are few reports on metal-free electrocatalysis, especially oxygen evolution reaction (OER) using CPF. Herein, we have developed two triazine-based donor-acceptor conjugated polymer frameworks by coupling a 3-substituted thiophene (donor) unit with a triazine ring (acceptor) through a phenyl ring spacer. Two different sidechains, alkyl and oligoethylene glycol, were rationally introduced into the 3-position of thiophene in the polymer framework to investigate the effect of side-chain functionality on the electrocatalytic property. Both the CPFs demonstrated superior electrocatalytic OER activity and long-term durability. The electrocatalytic performance of CPF2, which achieved a current density of 10 mA/cm2 at an overpotential (η) of 328 mV, is much superior to CPF1, which reached the same current density at an overpotential of 488 mV. The porous and interconnected nanostructure of the conjugated organic building blocks, which allowed for fast charge and mass transport processes, could be attributed to the higher electrocatalytic activity of both CPFs. However, the superior activity of CPF2 compared to CPF1 may be due to the presence of a more polar oxygen-containing ethylene glycol side chain, which enhances the surface hydrophilicity, promotes better ion/charge and mass transfer, and increases the accessibility of the active sites toward adsorption through lower π-π stacking compared to hexyl side chain present in CPF1. The DFT study also supports the plausible better performance toward OER for CPF2. This study confirms the promising potentiality of metal-free CPF electrocatalysts for OER and further sidechain modification to improve their electrocatalytic property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.