Abstract

Abstract Polymer solar cells (PSCs) have received widespread attentions recently due to the significant innovations of narrow bandgap n-type organic semiconductor (n-OS) acceptors. To obtain efficient PSCs, it is crucial to employ suitable donor/acceptor pair with matched electronic energy levels, complementary absorption spectra, appropriate molecular self-assembly behavior and preferred blend film morphology, which can be achieved by rational molecular structure optimization. Here we develop three D-A copolymer donors J55, J65 and J75 based on identical building blocks of bithienyl-benzodithiophene (BDTT) D-unit and bifluorine substituted benzotriazole A-unit with different flexible side-chains on BDTT unit to regulate the molecular electronic energy levels and molecular aggregation features, for further improving photovoltaic performance of the PSCs. The three D-A copolymers showed similar absorption profiles due to the identical building blocks. In comparison with the alkyl side-chain substituted polymer J55, the polymers J65 and J75 with alkylthio side-chain and alkylsilyl side-chain showed gradually down-shifted highest occupied molecular orbital energy levels (EHOMO) of −5.38 and −5.43 eV, respectively, which is beneficial for obtaining high open-circuit voltage (Voc). The favorable morphology with preferred face-on orientation and stronger integrated intensity of the π-π stacking peak was formed in J75 blend, which contributes to charge transport, thus enhancing the fill factor (FF) and Jsc. The PSC with J75 as donor and ITIC as acceptor exhibits an efficient PCE of 11.07%, with a Voc of 0.94 V, an enhanced Jsc of 16.99 mA cm−2 and a high FF of 69.29%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call