Abstract

Minor changes to side chains in conjugated polymers (CPs) can have pronounced effects on polymer properties by altering backbone planarity, solubility, and interaction with ions. Here, we report the photocontrolled synthesis of hydrophilic CPs from Grignard monomers and find that switching from alkyl to oligo(ethylene glycol) (OEG) side chains changes their photoreactivity. Specifically, installing hydrophilic side chains on the same monomer core yields higher molecular weight polymers and allows polymerization to proceed with lower-energy red light. Additionally, we discover a side chain decomposition pathway for N-OEG monomers, which are prevalent in CP research. Decomposition can be overcome by adding an extra methylene unit in the side chains without compromising polymer molecular weight or hydrophilicity. Importantly, this polymerization does not require transition metal catalysts and is a promising approach to the preparation of n-type conjugated block copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call