Abstract

Two donor–acceptor (D−A) copolymers, PEHBDT-BTz and PODBDT-BTz, containing the same backbone of benzodithiophene (BDT) and bithiazole (BTz) units but different side chains were designed and synthesized. Effects of the side chains of BDT and BTz units on solubility, absorption spectra, energy levels, film morphology, and photovoltaic properties of the polymers were investigated. Results showed that the more branched side chains could increase the molecular weight and the introduction of alkylthienyl groups into BTz unit benefits to broaden the absorption and lower the bandgaps as well as deepen HOMO levels, which are propitious to improve the short-circuit current density (Jsc) and open-circuit voltage (Voc) of photovoltaic cells. Polymer solar cells (PSCs) were prepared with the polymers as electron donors and PCBM as an acceptor. The device fabrication conditions, including the additive, the different acceptor and blend ratio of the polymer donor and acceptor, have been optimized. PCE of PSCs based on the copolymers varied from 2.92% for PODBDT-BTz to 3.71% for PEHBDT-BTz, depending on the type and topology of the side chains on the BDT moiety. The results indicate that an appropriate choice of side chains on the backbone is an effective way to improve photovoltaic performance of the related PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call