Abstract

We report the synthesis and self-assembly of brush-linear diblock copolymers with variable side-chain length and density. Poly(pentafluorophenyl acrylate-g-ethylene glycol)-b-polystyrene ((PPFPA-g-PEG)-b-PS) brush-linear diblock copolymers are prepared by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of PPFPA and PS, followed by postpolymerization reaction between the precursor PPFPA-b-PS diblock copolymer and amine-functionalized PEG. By controlling the PEG chain length and the degree of substitution, we obtained brush-linear diblock copolymers with different side-chain lengths and densities. The solid-state morphologies of the diblocks are then examined by small-angle X-ray scattering (SAXS). At low PEG side-chain density, the segregation of PEG and PS away from PPFPA leads to the formation of PEG and PS lamellar domains with PPFPA in the interface. At high PEG side-chain density, the segregation is between the PPFPA-g-PEG brush block and the PS linear block, and the domain morphology is determined by the composition of the brush block. A partial experimental phase diagram is presented, and it illustrates the importance of both side-chain length and density on the microdomain morphology of brush-linear diblock copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.