Abstract

Dβ (or D-iso)- and Lβ- (or iso)- aspartyl (Asp) residues are accumulated in aged lens crystallins and amyloid beta (Aβ) proteins, respectively, as a result of spontaneous, nonenzymatic isomerization of normal Lα-Asp. To explore why such uncommon Asp isomers are accumulated, the stability of Lα-, Lβ-, and Dβ-Asp was compared in view of the staggered side-chain conformers. By using cylindrin (KVKVLGD7VIEV) from αB-crystallin and Aβ17-25 (L17VFF20AED23)VG25) containing Asp isomers, the vicinal spin-spin coupling constants of Asp Hα-Hβ1 and Hα-Hβ2 were quantified by high-resolution solution 1H NMR. It was found that the trans conformer was extremely preferred in Dβ-Asp7 side-chain of cylindrin. In Aβ17–25, the side chain of Lβ-Asp23 was likely to adopt trans conformer, while gauche conformers were rather rich in Lα-Asp23. In gauche conformers, the close distance between Asp carboxylate carbon (CCOO-) and backbone nitrogen (N) next to Asp is advantageous to the intramolecular cyclization to form succinimide intermediate, followed by the conversion from α- to β-Asp. The cyclization is limited in the trans conformer because of the long distance between CCOO- and N, to keep Dβ- or Lβ-Asp stable. This would be the reason for the site specificity of Asp isomerization in proteins. The higher population of trans conformer in Asp side chain, the less isomerization of Asp as shown as Asp76 in αA-crystallin. The stability and less reactivity of normal Asp and its isomers are the potential factors to determine whether or not the abnormal accumulation is permitted in aged crystallins and Aβ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call