Abstract
Large tsunamis pose an immense threat to the inhabitants and infrastructure of coastal communities. The hazard related to coastal flooding events depends not only on the hydrodynamic loading itself, but also on the amount of debris entrained and displaced by the flood. To date, limited knowledge on the interaction of tsunami-induced inundation and free-floating solid objects has been developed. Thus, it is unclear how these objects propagate within the flow and which parameters govern the entrainment and displacement process. The study presented herein attempts to improve the knowledge about the fundamental physical processes leading to objects entrainment and displacement. A unique set of flume experiments was designed and conducted at the Hydraulic Laboratory of the Department of Civil Engineering at the University of Ottawa, Canada. Shipping containers modelled as cuboids at the 1:40 geometric scale were entrained by a dam-break wave with different hydrodynamic conditions and initial configurations. For the first time, insight into the dependency of relevant parameters, such as cuboids gap-ratio and lateral displacement, is presented, with a focus on the cuboids rotation as well as longitudinal and lateral displacement. The cuboids movement is also related to the velocity field in the spatio-temporal domain. This study provides insights into the fundamental physical processes characterizing the displacement of cuboids and links these processes with their initial position. The data presented also serves as a benchmark dataset, which will be useful in the future for numerical modelling efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.