Abstract
Polymer-derived silicon oxycarbide ceramics (SiCO) have been considered as potential anode materials for lithium- and sodium-ion batteries. To understand their electrochemical storage behavior, detailed insights into structural sites present in SiCO are required. In this work, the study of local structures in SiCO ceramics containing different amounts of carbon is presented. 13 C and 29 Si solid-state MAS NMR spectroscopy combined with DFT calculations, atomistic modeling, and EPR investigations, suggest significant changes in the local structures of SiCO ceramics even by small changes in the material composition. The provided findings on SiCO structures will contribute to the research field of polymer-derived ceramics, especially to understand electrochemical storage processes of alkali metal/ions such as Na/Na+ inside such networks in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.