Abstract

During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model.

Highlights

  • When facing an infection, animals suffer several changes in their normal physiology and behavior, which include weakness, lethargy, reduced grooming and general movement, and a loss of appetite and interest in their surroundings (Dantzer, 2001)

  • Sickness behavior is characterized in many species by a change in a set of different behaviors, including locomotion and feeding

  • LPS is a lipopolysaccharide found in the outer membrane of gram-negative bacteria that is known to elicit the immune response in honey bees and other insects (Sluss et al, 1996; Boutros et al, 2002; Altincicek et al, 2008; Richard et al, 2008)

Read more

Summary

Introduction

Animals suffer several changes in their normal physiology and behavior, which include weakness, lethargy, reduced grooming and general movement, and a loss of appetite and interest in their surroundings (Dantzer, 2001). This change in the motivational state is known as sickness behavior and it is believed to be elicited by a nonspecific, innate immune response, without involvement of the adaptive immune system (Dantzer and Kelley, 1989). All these characteristics make social insects more prone to propagation of infectious diseases (Cremer et al, 2007), which has been an important selection pressure for the appearance of several strategies to counteract this adverse aspect of group living

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call