Abstract

ABSTRACTA sickle‐shaped surface crack in a round bar under complex Mode I loading is considered. First, the stress‐intensity factor (SIF) along the front of the flaw is numerically determined for five elementary Mode I stress distributions (constant, linear, quadratic, cubic and quartic) directly applied on the crack faces. The finite element method and linear elastic fracture mechanics concepts are employed. Then, a numerical procedure to calculate approximate values of SIF for a complex Mode I stress distribution on the crack faces is proposed based on both the power series expansion of the function describing such a stress distribution and the superposition principle. In order to validate the results obtained through the above procedure, a comparison with numerical data available in the literature is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.