Abstract
A critical link between the single molecular defect in sickle cell anemia and the extensive pathology of this disease is the reversible increase in red cell membrane permeability generated by hemoglobin S polymers in the deoxygenated state. This permeability, usually described as P (sickle), triggers a chain of events in which two constitutive transporters of the red cell membrane become activated-the recently cloned intermediate conductance, Ca 2+ -sensitive K channel, and the electroneutral K:Cl cotransporter-leading to sickle cell dehydration. This article reviews knowledge of the dehydration mechanism, stressing the marked heterogeneity of dehydration rates in sickle cell populations, and discusses recent contributions to understanding of the function and regulation of P (sickle), Ca 2+ -sensitive K channel, and K:Cl cotransporter, and of therapies targeted at these transporters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.