Abstract

Sickle cell hemoglobin (HbS) prepared in argon-saturated 1.8 M phosphate buffer was rapidly mixed with carbon monoxide (CO)-saturated buffer. The binding of CO to the sickle hemoglobin and the simultaneous melting of the hemoglobin polymers were monitored by transmission spectroscopy (optical absorption and turbidity). Changes in the absorption profile were interpreted as resulting from CO binding to deoxy-HbS while reduced scattering (turbidity) was attributed to melting (depolymerization) of the HbS polymer phase. Analysis of the data provides insight into the mechanism and kinetics of sickle hemoglobin polymer melting. Conversion of normal deoxygenated, adult hemoglobin (HbA) in high concentration phosphate buffer to the HbA-CO adduct was characterized by an average rate of 83 s −1. Under the same conditions, conversion of deoxy-HbS in the polymer phase to the HbS-CO adduct in the solution phase is characterized by an average rate of 5.8 s −1 via an intermediate species that grows in with a 36 s −1 rate. Spectral analysis of the intermediate species suggests that a significant amount of CO may bind to the polymer phase before the polymer melts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.