Abstract

This study aimed to address the significant bias in 0–44-day precipitation forecasts under numerical weather conditions. To achieve this, we utilized observational data obtained from 156 surface stations in the Sichuan region and reanalysis grid data from the National Centers for Environmental Prediction Climate Forecast System Model version 2. Statistical analysis of the spatiotemporal characteristics of precipitation in Sichuan was conducted, followed by a correction experiment based on the Analog Ensemble algorithm for 0–44-day precipitation forecasts for different seasons in the Sichuan region. The results show that, in terms of spatial distribution, the precipitation amounts and precipitation days in Sichuan Province gradually decreased from east to west. Temporally, the highest number of precipitation days occurred in autumn, while the maximum precipitation amount was observed in summer. The Analog Ensemble algorithm effectively reduced the error in the model forecast results for different seasons in the Sichuan region. However, the correction effectiveness varied seasonally, primarily because of the differing performance of the AnEn method in relation to precipitation events of various magnitudes. Notably, the correction effect was the poorest for heavy-rain forecasts. In addition, the degree of improvement of the Analog Ensemble algorithm varied for different initial forecast times and forecast lead times. As the forecast lead time increased, the correction effect gradually weakened.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.