Abstract

BackgroundStudies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important vectors of both malaria and lymphatic filariasis.MethodsArchived (from 2005–2012) and newly collected (from 2014) specimens of the An. funestus group collected indoors using CDC light traps in villages in northeastern Tanzania were analysed. They were identified to sibling species by PCR based on amplification of species-specific nucleotide sequence in the ITS2 region on rDNA genes. The specimens were furthermore examined for infection with Plasmodium falciparum and Wuchereria bancrofti by PCR.ResultsThe identified sibling species were An. funestus s.s., Anopheles parensis, Anopheles rivulorum, and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005–2007 to those from 2008–2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species composition were minor. No P. falciparum was detected in archived specimens, while 8.3% of the newly collected An. funestus s.s. were positive for this parasite. The overall W. bancrofti infection rate decreased from 14.8% in the 2005–2007 archived specimens to only 0.5% in the newly collected specimens, and with overall 93.3% of infections being in An. funestus s.s.ConclusionThe study indicated that the composition of the An. funestus group had remained rather stable during the study period, with An. funestus s.s. being the most predominant. The study also showed increasing P. falciparum infection and decreasing W. bancrofti infection in An. funestus s.s. in the study period, most likely reflecting infection levels with these parasites in the human population in the area.

Highlights

  • Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence

  • In the African settings, malaria is mainly caused by the most virulent Plasmodium falciparum parasite, and transmitted by efficient mosquito vectors belonging to sibling species of the Anopheles gambiae complex and the Anopheles funestus group [2,3,4,5,6]

  • Recent studies in northeastern Tanzania have documented a dramatic decline in the density of anopheline vectors, which has been reported to occur in parallel with a considerable decrease in prevalence of malaria [8,9,10]

Read more

Summary

Introduction

Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. The cause of the decline is not well understood and could not be directly linked to change in rainfall pattern or mosquito control intervention [9], and it occurred before the universal distribution of insecticideimpregnated bed nets in the area in 2011. It has substantially affected both the An. gambiae complex and the An. funestus group populations. The observed change in anopheline mosquito vectors could be due to environmental changes as well as mosquito control interventions [12,13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call