Abstract

A greenhouse gas inventory can for some ecosystems be based solely on the net CO2 exchange with the atmosphere and the export of dissolved organic carbon. In contrast, the global warming effect may be more complex in ecosystems where other greenhouse gases such as CH4 or N2O have significant exchanges with the atmosphere. Through micrometeorological landscape‐scale measurements from the largest wetlands on Earth in West Siberia we show that CH4 has a stronger effect than CO2 on the greenhouse gas budget in terms of radiative forcing on the atmosphere. Direct measurements of the CO2 and CH4 exchange during the summer of 1999 show that these wetland ecosystems, on average, acted as net sinks of carbon of 0.5 g C m−2 day−1 but large net sources of CH4. Given the high Global Warming Potential of CH4, the Siberian wetlands are an important source of radiative forcing, even in comparison to anthropogenic emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.