Abstract

The first spontaneous cherry polyploids were detected in the Altai gene pool of Russia and inside of the interspecific hybrids of Prunus fruticosa Pall. only. To date, polyploid genotypes with a complex of economically valuable traits and of various origins has preserved in the collection of FASCA. Collection includes: 1) F1 of spontaneous origin; 2) F2 obtained from hybridization of the first spontaneous hexaploid genotypes; 3) hybrids induced in vitro. These hybrids have a genetic origin from steppe cherry crossings with P. cerasus L., P. maackii Rupr., P. serrulata Lindl., P. canescens Bois., P. incisa Thumb., etc. Hexaploid amitotic clone lines were obtained by of 0.1% trifluralin treatment. The cellular mechanism of polyploids occurrence is the male and female unreduced gametes functioning. The study of microsporogenesis in 38 hybrids has revealed the 17 genetic producers of unreduced male gametes. According to the ploidy level of seedlings, the 8 sources of unreduced female gametes were selected. The morphophysiological characteristics of mature pollen were studied and the patterns for the preliminary selection of polyploids were revealed. The main strategy for the cherry breeding in the 21th century is the creation of polygenome hybrids with increased adaptation and high fruit quality.

Highlights

  • Remote hybridization and allopolyploidy played a crucial creative role in the evolutionary speciation of stone fruits of the Prunus L. genus

  • Steppe cherry (Prunus fruticosa Pall.) is recognized as the most winter-hardy tetraploid and an allopolyploid species. This concrete cherry species was used as the basis for the strategy of adaptive varieties development for the severe climatic conditions of Siberia [2]

  • The collection contains more than 40 steppe cherry polyploids, including 17 hybrid hexaploids

Read more

Summary

Introduction

Remote hybridization and allopolyploidy played a crucial creative role in the evolutionary speciation of stone fruits of the Prunus L. genus (with obtaining the genotypes resistant to abiotic and biotic factors). The collection contains more than 40 steppe cherry polyploids, including 17 hybrid hexaploids. The study of chromosome numbers and meiosis characteristics in the parental forms and in their seedlings assists to identify the most optimal ploidy level for breeding of each species, to identify the unreduced gametes genetic sources and to select the parent pairs for crosses.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.