Abstract

In order to expand the application of phenolic-type phthalonitrile resin in high-temperature fields, a series of organic–inorganic hybrid materials have been prepared via conventional blending and doping method. The chemical transformations were monitored by various measurements, while the curing behavior was evaluated by differential scanning calorimetry (DSC), and these new blends could be also cured under auto-catalytic process. The onset polymerization exothermic temperature shifted to lower temperatures (195.3°C). Later, the compatibility within the cured products was analyzed by using energy dispersive spectrometer (EDS) and scanning electron microscope (SEM), where no phase separation occurred between the ceramic domain and the phthalonitrile polymer. Upon curing, the thermal properties of the polymers were characterized by dynamic thermomechanical analysis (DMA) and thermogravimetric analysis (TGA), where enhanced heat resistance and thermal stability were discovered, The blends residual weight (Cy) value was 57.6% with 15 wt.% SiBCN at 1000°C. And when blended with SiBCN precursor, no peak or onset point could be observed in the temperature range (50 to 500°C), which indicated the glass transition temperature greater than 500°C. Additionally, the dielectric properties were evaluated. And when the content was 5 wt.%, the blends dielectric loss was 0.0043 and the permittivity was 4.31. The above results indicated that the introduction of ceramic precursors could enhance the thermal performance of phthalonitrile polymers, consequently the hybrid materials shown great potential in the application of higher temperature fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call