Abstract

The SiBCN ceramic aerogel/graphene composites were synthesized by combining a simple sol-gel infiltration process with CO2 supercritical drying technology and polymer-derived ceramics route. In order to select the best preceramic sample for sintering, the micromorphology of PSNB aerogel/graphene composites fabricated with different graphene oxide solution concentrations were investigated. The microstructure evolution of the prepared SiBCN ceramic aerogel/graphene composites and phase composition were studied by SEM, TEM and XRD, the pore structure of the preceramic composites pyrolyzed at 1200 °C was tested by specific surface area and pore size analyzer. Furthermore, the compressive strain-stress curve and toughening mechanisms of composites were also investigated in detail. The results showed that all the preceramic composites and obtained ceramic aerogel composites possessed the mesoporous structure. The basic structure of SiBCN aerogel network changed from the initial spherical particles accumulation to the nanowires lapping with the sintering temperature increased from 800 °C to 1200 °C. After pyrolyzing at 1200 °C, the specific surface area and pore volume for the sample were 101.61 m2 g−1 and 1.43 cm3 g−1, respectively, and a small amount of β-SiC crystalline phases were formed in amorphous ceramic matrix and had an relatively uniform distribution. Moreover, the paepared ceramic aerogel composites possessed a certain degree of toughness, the toughening mechanisms of composite samples mainly included the crack deflection, graphene pull-out, graphene bridging and graphene crumpling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call