Abstract

Semiconductor-based ultraviolet (UV) photodiodes have been continuously developed that can be widely used in various commercial, civilian areas, and military applications, such as optical communications, missile launching detection, flame detection, UV radiation calibra‐ tion and monitoring, chemical and biological analysis, optical communications, and astro‐ nomical studies, etc. [1-2]. All these applications require very sensitive devices with high responsivity, fast response time, and good signal-to-noise ratio is common desirable charac‐ teristics. Currently, light detection in the UV spectral range still uses Si-based optical photo‐ diodes. Due to the Si-based photodiodes are sensitive to visible and infrared radiation, the responsivity in the UV region is still low [3-5]. To avoid these disadvantages, wide-bandgap materials (such as diamond, SiC, III-nitrides and wide-bandgap II–VI materials) are under intensive studies to improve the responsivity and stability of UV photodiodes, because of their intrinsic visible-blindness [6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.