Abstract

The power to separate the variance of a quantitative trait locus (QTL) from the polygenic variance is determined by the variability of genes identical by descent (IBD) at the QTL. This variability may increase with inbreeding. Selfing, the most extreme form of inbreeding, increases the variability of the IBD value shared by siblings, and thus has a higher efficiency for QTL mapping than random mating. In self-incompatible organisms, sib mating is the closest form of inbreeding. Similar to selfing, sib mating may also increase the power of QTL detection relative to random mating. In this study, we develop an IBD-based method under sib mating designs for QTL mapping. The efficiency of sib mating is then compared with random mating. Monte Carlo simulations show that sib mating designs notably increase the power for QTL detection. When power is intermediate, the power to detect a QTL using full-sib mating is, on average, 7% higher than under random mating. In addition, the IBD-based method proposed in this paper can be used to combine data from multiple families. As a result, the estimated QTL parameters can be applied to a wide statistical inference space relating to the entire reference population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.