Abstract
In this paper, we present a novel anchor-free visual tracking framework, referred to as feature dynamic activation siamese network (SiamFDA), which addresses the issue of ignoring global spatial information in current Siamese network-based tracking algorithms. Our approach captures long-range dependencies between distant pixels in space, which enables robustness to unreliable regions. Additionally, we introduce a hierarchical feature selector that adaptively activates features at different layers, and an adaptive sample label assignment method to further improve tracking performance. Our extensive evaluations on six benchmark datasets, including VOT-2018, VOT-2019, GOT10k, LaSOT, OTB-2015, and OTB-2013, demonstrate that SiamFDA outperforms several state-of-the-art trackers in various challenging scenarios, with a real-time frame rate of 40 frames per second.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.