Abstract
The tracker based on the Siamese network regards tracking tasks as solving a similarity problem between the target template and search area. Using shallow networks and offline training, these trackers perform well in simple scenarios. However, due to the lack of semantic information, they have difficulty meeting the accuracy requirements of the task when faced with complex backgrounds and other challenging scenarios. In response to this problem, we propose a new model, which uses the improved ResNet-22 network to extract deep features with more semantic information. Multilayer feature fusion is used to obtain a high-quality score map to reduce the influence of interference factors in the complex background on the tracker. In addition, we propose a more powerful Corner Distance IoU (intersection over union) loss function so that the algorithm can better regression to the bounding box. In the experiments, the tracker was extensively evaluated on the object tracking benchmark data sets, OTB2013 and OTB2015, and the visual object tracking data sets, VOT2016 and VOT2017, and achieved competitive performance, proving the effectiveness of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.