Abstract

Selectin ligands are glycan structures that participate in leukocyte trafficking and inflammation. At least 6 ST3Gal sialyltransferases (I-VI) have been identified that may contribute to selectin ligand formation. However, it is not known which of these sialyltransferases are involved in vivo and whether they may differentially regulate selectin function. We have produced and characterized mice genetically deficient in ST3Gal-I, ST3Gal-II, ST3Gal-III, and ST3Gal-IV. Unlike mice bearing severe defects in selectin ligand formation, there was no finding of leukocytosis with these single ST3Gal deficiencies. Among neutrophils, only ST3Gal-IV was found to play a role in the synthesis of selectin ligands. In vitro rolling of marrow-derived neutrophils on E- or P-selectins presented by Chinese hamster ovary cells was reduced in the absence of ST3Gal-IV. However, in a tumor necrosis factor alpha (TNF-alpha)-induced inflammation model in vivo, no defect among P-selectin ligands was observed. Nevertheless, the number of leukocytes rolling on postcapillary venules in an E-selectin-dependent manner was decreased while E-selectin-dependent rolling velocity was increased. We propose that multiple ST3Gal sialyltransferases contribute to selectin ligand formation, as none of these ST3Gal deficiencies recapitulated the degree of E- and P-selectin ligand deficit observed on neuraminidase treatment of intact neutrophils. Our findings indicate a high degree of functional specificity among sialyltransferases and a substantial role for ST3Gal-IV in selectin ligand formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.