Abstract
Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.