Abstract
Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.