Abstract

The effects of malaria infection on RBC sialic acids and sialoglycoproteins were studied with asexual blood-stage infections of Plasmodium knowlesi in rhesus monkeys. Glycoprotein radio-isotope labelling methods were used to compare the sialoglycoproteins of normal RBC and P. knowlesi schizont-infected RBC (SI-RBC). Tritiation of glycoproteins from SI-RBC with the standard sialidase + galactose oxidase/NaB3H4 method or standard periodate/NaB3H4 method was significantly decreased when compared to normal RBC. However, tritium uptake into glycoproteins was normal when SI-RBC were treated with 5-fold higher concentrations of both enzymes in the first labelling method, or with a 5-fold increase in the molar ratio of periodate to sialic acid in the second method. The mobility of tritiated host cell glycoproteins on SDS-polyacrylamide gels was identical for SI-RBC and normal RBC. New bands, possibly glycoproteins, of 230, 160, 90, 52, and 30 kDa were detected after labelling SI-RBC by the modified periodate/NaB3H4 method. Sialic acid analysis of normal rhesus monkey RBC (62 micrograms/10(10) RBC) revealed that 46% of the total sialic acid was N-glycolylneuraminic acid, 33% was N-acetyl-9-O-acetylneuraminic acid, and the remainder N-acetylneuraminic acid. SI-RBC collected either directly from infected monkeys or after in vitro culture of ring-infected RBC in horse serum, had increased total sialic acid (126 or 115 micrograms/10(10) RBC, respectively). The sialic acid content of infected RBC must increase during parasite development since RBC infected with ring-stage P. knowlesi had the same content as normal RBC. There was no significant difference in the ratio of the three sialic acids of SI-RBC and normal RBC. In contrast, the uninfected RBC from infected blood of different monkeys showed marked variation in sialic acid composition and generally had a lower sialic acid content than normal RBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.