Abstract

Sialoadhesin (CD169/Siglec-1, Sn) is a macrophage receptor that interacts with sialic acids on both host cells and pathogens. It is a type 1 membrane protein with an unusually large number of 17 extracellular immunoglobulin (Ig)-like domains, made up of an N-terminal V-set domain that binds sialic acid and 16 adjacent C2-set domains. The potential importance of 17 Ig domains in Sn for mediating cellular interactions has not been investigated experimentally. In the present study, Chinese Hamster Ovary (CHO) cells were stably transfected with full-length or truncated forms of Sn. Using human red blood cells (RBC) as a model system, CHO cells expressing truncated forms of Sn with 4 or less Ig domains were unable to bind RBC in comparison to the full-length protein. Immunoelectron microscopy of the CHO cells indicated that full-length Sn extends ~ 33 nm from the plasma membrane compared with ~ 14 nm for a truncated form with 6 N-terminal Ig domains. Co-expresssion of Sn-expressing CHO cells with heavily glycosylated membrane proteins of differing predicted lengths resulted in selective modulation of Sn-dependent binding to RBC and supported the hypothesis that Sn has evolved 17 Ig domains to escape inhibitory cis-interactions. The functional significance of the extended length of Sn was demonstrated in experiments with macrophages showing that Sn synergizes with phagocytic receptors FcR and TIM-4 to strongly promote uptake of IgG-opsonized and eryptotic RBC respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call