Abstract

Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces.

Highlights

  • In the gastrointestinal (GI) tract, sialic acid [Nacetylneuraminic acid (Neu5Ac)] is commonly found in terminal location of mucins [1,2]

  • The release of sialic acid from nonreducing ends by sialidases is an initial step in the sequential degradation of mucins, since the terminal location of sialic acid residues in the mucin oligosaccharide chains may prevent the action of other glycoside hydrolases (GHs)

  • A recent study reported that mice monoassociated with B. thetaiotaomicron exhibited a significantly higher concentration of free Neu5Ac compared with germ-free mice, consistent with the ability of B. thetaiotaomicron to liberate but not consume the monosaccharide, whereas colonization of mice with B. fragilis, which is able to catabolize Neu5Ac, did not result in increased free sialic acid [24]

Read more

Summary

Introduction

In the gastrointestinal (GI) tract, sialic acid [Nacetylneuraminic acid (Neu5Ac)] is commonly found in terminal location of mucins [1,2]. A number of gut bacteria employ sialidases in the release of host sialic acids, including Some bacteria appear to possess the complete pathway of sialic acid catabolism including a predicted sialidase gene e.g. B_fragilis strains [14,25].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.