Abstract

Small interference RNA (siRNA)-based therapy holds great potential for cancer treatment. However, its clinical application remains unsatisfied due to the lack of a safe and effective RNA delivery system. Aberrantly elevated sialyation on cell membrane has been reported as an attractive target for cancer diagnosis and therapy. In this study, phenylboronic acid (PBA) was conjugated onto low molecular weight polyethylenimine (PEI1.8k) to generate amphiphilic PBA-grafted PEI1.8k (PEI-PBA) nanovector, which was designed to facilitate cancer-targeted RNA delivery through the recognition of sialic structures on a cancer cell membrane. PEI-PBA simultaneously encapsulated siRNA to form PEI-PBA/siRNA nanocomplexes with great biocompatibility, serum stability and RNase resistance. The cell culture study showed that PEI-PBA/siRNA dramatically increased siRNA uptake up to 70-90% in several cancer cell lines, which relied on the interaction between PBA and sialic acid on cell membrane. Moreover, the PEI-PBA nanovector effectively promoted the lysosome escape of siRNA, decreasing the expression of target gene Polo-like kinase 1 (PLK-1) in cancer cells. The systemic administration of PEI-PBA/PLK-1 siRNA (PEI-PBA/siPLK1) nanocomplexes not only facilitated tumor-targeted siRNA delivery but also significantly decreased PLK-1 expression in tumors, thereby robustly inducing tumor apoptosis and cell cycle arrest. Additionally, the administration of PEI-PBA/siPLK1 did not cause significant systemic toxicity or immunotoxicity. Hence, sialic acid-targeted PEI-PBA could be a highly efficient and safe nanovector to improve the efficacy of cancer siRNA therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.