Abstract
Axonal injury of the dorsal root ganglion (DRG) neurons may alter the synthesis of certain membrane proteins that are responsible for the development of abnormal hyperexcitability. The external domains of most of these membrane proteins are sialylated. Because sialic acid carries heavy negative charges, the increase of sialylated proteins may increase neurons' negative surface charges, which will have predictable effects on the voltage-gated channels, and affect the excitability of injured neurons. Using intracellular electrophysiological recording, we demonstrated that following chronic constriction injury (CCI) of the sciatic nerve, Aα/β DRG neurons become hyperexcitable, as indicated by a more depolarized resting membrane potential ( V m) and a lowered threshold current ( T IC). More interestingly, the excitability of injured DRG neurons was reduced substantially when the extracellular sialic acid was removed by pretreatment with neuraminidase. The V m was less depolarized and the T IC increased robustly as compared to the CCI neurons without neuraminidase treatment. However, desialylation of normal, intact neurons had no significant effect on the V m and less effect on the T IC. Our results suggest that the hyperexcitability of injured sensory neurons may be associated with increased negatively charged sialic acid residues on the surface of the neuronal somata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.