Abstract

Type 1 fimbriae of E. coli, a chaperon-usher bacterial adhesin, are synthesized by the majority of strains of the bacterium. Although frequently produced by commensal strains, the adhesin is nevertheless a virulence factor in Extraintestinal Pathogenic E. coli (ExPEC). The role of the adhesin in pathogenesis is best understood in Uropathogenic E. coli (UPEC). Host attachment and invasion by type 1 fimbriate bacteria activates inflammatory pathways, with TLR4 signaling playing a predominant role. In a mouse model of cystitis, type 1 fimbriation not only enhances UPEC adherence to the surface of superficial umbrella cells of the bladder urothelium, but is both necessary and sufficient for their invasion. Moreover the adhesin plays a role in the formation of transient intracellular bacterial communities (IBCs) within the cytoplasm of urothelial cells as part of UPEC cycles of invasion. The expression of type 1 fimbriation is controlled by phase variation at the transcriptional level, a mode of gene regulation in which bacteria switch reversibly between fimbriate and afimbriate phases. Phase variation has been widely considered to be a mechanism enabling immune evasion. Notwithstanding the apparently random nature of phase variation, switching of type 1 fimbrial expression is nevertheless controlled by a range of environmental signals that include the amino sugars sialic acid and N-acetylglucosamine (GlcNAc). Sialic acid plays a pivotal role in innate immunity, including signaling by the toll-like receptors. Here how sialic acid and GlcNAc control type 1 fimbriation is described and the potential significance of this regulatory response is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.