Abstract

BackgroundUsing clinical samples and database analysis, this study aimed to investigate the signaling pathways that mediated degeneration of nucleus pulposus cells (NPCs) in patients with intervertebral disc degeneration (IDD). MethodsNPCs were extracted from enucleated intervertebral discs of IDD patients, and the senescence, apoptosis, and extracellular matrix (ECM) synthesis levels of cells were confirmed by β-galactosidase (SA-β-gal), Western blot, and measurement of superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH). The microarray expression profile of GSE56081 was downloaded to screen differentially expressed mRNAs. CO-IP and ubiquitination assays were used to determine the targeted regulation of XIAP by SIAH1. Methylation of mRNA was verified by m6A RIP and actinomycin D assays. ResultsNPCs extracted from the enucleated intervertebral discs of IDD patients exhibited marked senescence, apoptosis, elevated levels of inflammation, and decreased ECM synthesis. The expression of SIAH1 was significantly elevated in NPCs of IDD patients, and SIAH1 knockdown reversed senescence, apoptosis, elevated levels of inflammation, and decreased ECM synthesis in NPCs of IDD patients. CO-IP and ubiquitination assays indicated that SIAH1 can target and ubiquitinate XIAP. Besides, MeRIP-qPCR and actinomycin experiments showed that METTL3-mediated m6A can methylate SIAH1 mRNA. ConclusionIn IDD patients, SIAH1 can target and ubiquitinate XIAP, thereby mediating senescence, apoptosis, increased inflammation, and decreased ECM synthesis of NPCs, while METTL3-mediated m6A can methylate SIAH1 mRNA, producing harmful effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call