Abstract

Thermoelectricity offers an excellent clean energy generation opportunity and has attracted renewed attention in the last few decades. The low conversion efficiency and high costs currently limit its practical application. Much effort is still needed to enhance its efficiency and reduce its cost. Nanostructures have been proven to greatly enhance the thermoelectric figure of merit (ZT) because of increased phonon scattering at the interfaces. It has been demonstrated that single Si nanowires (NWs) exhibit a 60 times higher ZT than Si bulk. Meanwhile, SiGe alloys can also reduce the thermal conductivity via alloy scattering without deteriorating the other performance parameters such as Seebeck coefficient, S and electrical conductivity, σ. SiGe NWs thus promise to offer even better thermoelectric performance than Si. In this work, recent research results on the fabrication and thermoelectric characterisation of SiGe nanowire arrays (NWAs) are given. The NWAs are arrays of millions of parallel upstanding NWs attached to Si bulk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.