Abstract

The synthesis, composition, and catalytic properties of a new family of hexanuclear Cu(II)-based phenylsilsesquioxanes are described here. Structural studies of 17 synthesized compounds revealed the general principle underlying their molecular topology: viz., a central metal oxide layer consisting of two Cu3 trimers is coordinated by two cyclic [PhSiO1.5]5 siloxanolate ligands to form a skewed sandwich architecture with the composition [(PhSiO1.5)10(CuO)6]2+. In addition to this O ligation by the siloxanolate rings, two opposite copper ions are additionally coordinated by the nitrogen atoms of corresponding N ligand(s), such as 2,2'-bipyridine (compounds 1-9), 1,10-phenanthroline (compounds 10-13), mixed 1,10-phenanthroline/2,2'-bipyridine (compound 14), or bathophenanthroline (compounds 15-17). Finally, the charge balance is maintained by two HO- (compounds 1-7, 10-13, and 15-17), two H3CO- (compound 8), or two CH3COO- (compounds 9 and 14) anions. Complexes 1 and 10 exhibited a high activity in the oxidative amidation oxidation of alcohols. Compounds 1, 10, and 15 are very efficient homogeneous catalysts in the oxidation of alkanes and alcohols with peroxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call