Abstract

A variety of methods exist to measure the stiffness of microfabricated cantilever beams such as those used as mechanical sensors in atomic force microscopy (AFM). In order for AFM to be used as a quantitative small force measurement tool, these methods must be validated within the International System of Units (SI). To this end, two different contact techniques were used to calibrate the spring constant of a cantilever beam. First, a dynamic indentation-based method was used to measure the spring constant of a rectangular cantilever beam. These results were then compared against an SI-traceable spring constant measurement from an electrostatic force balance (EFB). The measurements agree within experimental uncertainty and within 2% for spring constants greater than 2 N/m. The use of this cantilever beam as a transfer artifact for in situ AFM cantilever calibration was then evaluated in comparison to the thermal calibration method. Excellent agreement is seen between these techniques, establishing the consistency of the thermal and dynamic indentation methods with SI-traceable contact cantilever calibration for the rectangular cantilever geometry tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call