Abstract

We present a measurement scheme for creating reference electrostatic forces that are traceable to the International System of Units. This scheme yields reference forces suitable for calibrating the force sensitivity of instrumented indentation machines and atomic force microscopes. Forces between 10 and 200 muN were created and expressed in terms of the voltage, length, and capacitance between a pair of interacting electrodes. The electrodes comprised an electrically conductive sphere mounted as a tip on an instrumented indentation sensor, and a planar counterelectrode fixed to a sample stage in close proximity to the sphere. For comparison, we applied mechanical forces of similar magnitudes, first using deadweights and then using a reference force sensor. The deflection of the sensor due to the various applied forces was measured using an interferometer. A spring constant for the sensor was computed from the observed records of force versus displacement. Each procedure yielded a relative standard uncertainty of approximately 1%; however, the electrostatic technique is scalable and could provide traceable reference forces as small as a few hundred piconewtons, a range far below anything yet achieved using deadweights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call