Abstract

Near-infrared photodetectors have been fabricated using standard CMOS processes in conjunction with the multilayer growth of Si/SiGe0.06 using low-pressure chemical vapor deposition (LPCVD). Cross-section scanning electron microscopy (SEM) indicates the existence of quantum dot like corrugations in devices with particularly thick SiGe0.06 quantum wells. With an accumulation of germanium atoms at the crest of such features and commensurate high germanium concentration we see a considerable enhancement of the long wavelength detection sensitivity of photodetectors in the range 1100–1300 nm. By fitting experimental data the minimum energy gap of the structure is found to be 0.88 eV corresponding to a germanium concentration of around 15%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.