Abstract
Multichip Module (MCM) packaging has been used in high-end systems, such as mainframe and supercomputers for some time. Rapid advances in VLSI technology and novel system architecture concepts have presented both challenges and opportunities for MCM technologists. We should not just try to find a solution, but also try to take a long-term view and plan the technological development. We would like to develop MCM technology which has a broad range of applications from consumer products to supercomputers. The technology should focus on low cost, high performance, compact size, and high reliability. We believe that it is most attractive to leverage IC technology and surface mount technology (SMT). Therefore we select Si wafer as the substrate, Al as the metallization, polyimide as the dielectrics, Ta-Si as the resistor material, and Si oxide and nitride as the dielectrics for capacitor. Flip-chip solder attachment are used to assemble chips on the substrate. We view our version of MCM as a “giant chip” rather than a miniaturized printed wiring board. This “giant chip” contains mixed device technologies which cannot be obtained by current device technology. The migration path should be from small to large module. The infrastructure of the CAD system and the testing system is critical for the development of MCM technology. Potential applications and implementations of MCM technology are given in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of High Speed Electronics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.