Abstract

AbstractWe simulate the reactive-hydrodynamic flow for a variety of convective shell burning epochs in supernova progenitor models. The neutrino-cooled stages of carbon, neon, oxygen, and silicon burning are simulated in two and three dimensions. Even in the absence of rotation significant symmetry breaking occurs (10% in rms variation in thermodynamic variables such as temperature and density). These distortions are caused by turbulent convection interacting with stably stratified boundaries. Strong interactions of multiple active shells is seen; it is mediated by waves generated by convection. Some implications for supernova progenitors are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.