Abstract

• Design guidelines, fabrication process, and evaluation of a 1.7-kV and 300-A multi-chip half bridge power module using the novel Si-IGBT and SiC-MOSFET hybrid switch in each switch position. • The module achieves its maximum DC current rating with a 6:1 current ratio of Si to SiC. • A novel custom-designed TPG-encapsulated metal base plate is proposed. • Silver clips for top-side interconnect in the module, facilitating a wire bond-less interconnection, high reliability, and low power loop inductance. • High thermal dissipation capability while maintaining a near-isolated thermal path for the SiC MOSFET to operate at a higher temperature than the Si-IGBT. This paper informs the design guidelines, fabrication process, and evaluation of a 1.7-kV and 300-A multi-chip half bridge power module using the novel Si-IGBT and SiC-MOSFET hybrid switch in each switch position. The module achieves its maximum DC current rating with a 6:1 current ratio of Si to SiC. This high current ratio yields significant cost savings compared to an all-SiC power module. The module employs high-reliability silver clips, which replaces conventional wire bonds for top-side interconnection, to partly enable a low power loop inductance of 12.38 nH. A novel thermal pyrolytic graphite-encapsulated metal baseplate is key to reducing the thermal coupling among the adjacent Si and SiC die, enabling higher junction temperature for SiC die relative to the Si die.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.