Abstract

Hydrogen-terminated silicon nanoparticles (H-SiNPs) inhibit anerobic thermal autopolymerization of methacrylates. When heated to 100 °C under an inert atmosphere, allyl methacrylate (AMA) was stable for at least 95 h in the presence of 1.2 wt % H-SiNPs, exhibiting less than 0.15% conversion, whereas the neat monomer solidified within 24 h (over 10% conversion after 34 h). A mechanism is proposed that is based on H-transfer from SiNPs to the thermally activated methacrylic dimer biradical, quenching autopolymerization. An analysis of SiNPs isolated after heating in AMA reveals the grafting of ester groups. Thermal hydrosilylation offers a facile way to attach an allyl group to the surface of SiNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.