Abstract

AbstractA robust and electrochemically stable 3D nanoheterostructure consisting of Si nanoparticles (NPs), carbon nanotubes (CNTs) and reduced graphene oxide (rGO) is developed as an anode material (Si–CNT/rGO) for lithium‐ion batteries (LIBs). It integrates the benefits from its three building blocks of Si NPs, CNTs, and rGO; Si NPs offer high capacity, CNTs act as a mechanical, electrically conductive support to connect Si NPs, and highly electrically conductive and flexible rGO provides a robust matrix with enough void space to accommodate the volume changes of Si NPs upon lithiation/delithiation and to simultaneously assure good electric contact. The composite material shows a high reversible capacity of 1665 mAh g−1 with good capacity retention of 88.6 % over 500 cycles when cycled at 0.5 C, that is, a 0.02 % capacity decay per cycle. The high‐power capability is demonstrated at 10 C (16.2 A g−1) where 755 mAh g−1 are delivered, thus indicating promising characteristics of this material for high‐performance LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call