Abstract

A dramatic, pH-dependent change in the steady-state chemical and morphological structure of Si(100) surfaces etched in aqueous fluoride solutions is observed with infrared spectroscopy and scanning tunneling microscopy. Low pH solutions (5 ≤ pH ≤ 7), such as the technologically important buffered oxide etchant (buffered HF), produce rough surfaces covered with nanoscale Si{110}-faceted hillocks. In contrast, higher pH solutions (7.8 ≤ pH ≤ 10), including 40% NH4F (aq.), produce atomically smooth surfaces. The etched surfaces are terminated by a monolayer of H atoms irrespective of pH. The pH-dependent transition is attributed to two competing multistep reaction pathways. At higher pH, the base-catalyzed formation of a surface silanone leads to the production of smooth surfaces. This reaction channel is suppressed at low pH, leading to the formation of {110}-faceted hillocks by a second reaction. The morphological transition is not affected by dissolved O2 in the etchant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.